Table of Contents

INTRODUCTIO	Ν	
MATRIX OF M	NATHEMATICAL CONCEPTS AND SKILLS	
NUMBER 1	THE MISSING EIGHT	1
NUMBER 2	THE LIGHTNING CALCULATOR	5
NUMBER 3	FORETELLING A SUM	
NUMBER 4	UNVEILING EVEN AND ODD	13
NUMBER 5	PREDICTING THE HOUR	17
NUMBER 6	AMAZING PROGNOSTICATION	21
NUMBER 7	PREDICTABLE DICE	25
NUMBER 8	WHO IS HIDING THE COIN?	29
NUMBER 9	THE MARBLE TRANSFER	33
NUMBER 10	THE MONEY MYSTERY	37
NUMBER 11	PERMUTATION PREDICTION	41
NUMBER 12	DIVINING TWO NUMBERS	45
NUMBER 13	REVEALING FACTORS	49
NUMBER 14	MAGICAL NUMBER NINE	55
NUMBER 15	THE MISSING DIGIT	60
NUMBER 16	A PERMUTATION TRICK	65
NUMBER 17	THE REAPPEARING NUMBER	69
NUMBER 18	THINK OF A NUMBER	73
NUMBER 19	DIVINING FROM A TABLE	77
NUMBER 20	THE DOMINO CHAIN	82

THE TRICK: Magical Number Nine

Variation One

- 1. Select a three-digit number in which none of the three digits is the same.
- 2. Form another three-digit number by rearranging the original digits.
- 3. Now subtract the two three-digit numbers and add the digits in this difference.
- 4. From the first (or last) digit in the sum, you can tell the other digit.

Variation Two

- Follow the steps above through step #3.
- 2. If the sum is not one digit, continue adding the digits in the result until you reach a one digit number. You can predict this digit.

UNRAVELING THE TRICK

- 1. Choose three different variables for the hundred's, ten's and unit's digit of the number, and write them in appropriately labelled columns.
- 2. Borrow one from the hundred's column, and rewrite the hundred's and ten's digits.
- 3. Borrow one from the ten's column, and rewrite the ten's and unit's digits.
- 4. Suppose the permutation selected is the original digits in reverse order. Subtract these digits from those appearing in the table.
- 5. Sum the digits in the difference above, and use this result to explain the trick.

QUESTIONS TO PONDER

- 1. What would happen if all the digits in the chosen number were the same?
- 2. Can two of the digits be the same?
- 3. Can you verify the trick if one uses a permutation other than the original digits reversed?
- 4. Will the sum of the digits in the difference always be a multiple of 9?